Abstract

Commercial Ni-Cr and specially prepared Ni-Pd alloys were used as a catalyst’s precursor for the synthesis of the heteroatom-doped carbon nanofibers. In order to provide the intercalation of the doping heteroatom into the structure of the carbon product, the synthesis was performed in the one pot regime, when heteroatom-containing substance was subjected to decomposition simultaneously with carbon source compound. Chlorobenzene, 1-bromobutane, 1-iodobutane, and melamine were used as heteroatom-and carbon-containing sources in the experiments carried out in a closed reactor system. 1,2-dichloriethane, being a source of chlorine and carbon, was decomposed in a flow-through reactor system. Additionally, acetonitrile and carbon dioxide were admixed to 1,2-dichloriethane as nitrogen and oxygen sources. It was found that in all the cases, except for halogenated butanes, the amount of the intercalated heteroatom can reach 3-8 at.%. Both the substrate’s nature and the composition of the reaction mixture were found to affect the morphologic features of the carbon nanostructures produced.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call