Abstract
Thin films of n-type cuprous oxide (Cu2O) were potentiostatically electrodeposited on a Ti substrate in an acetate bath. Cu2O thin films were annealed at 500 °C for 30 min in air for growing p-type cupric oxide (CuO) thin films. n-Cu2O thin films were potentiostatically electrodeposited in an acetate bath on Ti/CuO electrodes in order to fabricate the p-CuO/n-Cu2O heterojunction. The structural, morphological and optoelectronic properties of the CuO/Cu2O heterojunction were studied using x-ray diffraction (XRD), scanning electron micrographs (SEMs) and dark and light current–voltage characteristics. XRD and SEM reveal that well-covered single phase polycrystalline Cu2O thin film on the Ti/CuO electrode can be possible at the deposition potential of −550 mV versus the saturated calomel electrode (SCE) in an acetate bath. Photovoltaic characteristics further established the formation of the CuO/Cu2O heterojunction.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.