Abstract

We describe a frontside Si micromachining process for the fabrication of suspended silicon oxide or nitride membranes for thermal sensors. Membrane release is achieved by means of lateral nearly isotropic dry etching of the bulk silicon substrate, the etching being optimized for high rates and high selectivity with respect to the photoresist used to protect the device and the membrane material. Lateral Si etch rates of the order of 6–7 μm min−1 have been achieved in a high-density F-based plasma, which permit a reasonable etching time for the release of the membrane and the simultaneous formation of the cavity underneath ensuring thermal isolation of the final device. The proposed process can enhance the flexibility of device design and reduce the complexity of the fabrication process, since it does not require any additional steps other than the photoresist lithography for the protection of the active elements (e.g. polysilicon heaters and catalytic materials) that are formed on top of the membrane, due to the high selectivity of the process for Si etching with respect to the photoresist. We attempt to explain the observed dependencies of etch rates and selectivities on the plasma parameters and the dimensions of the released membranes by means of a simulator of the mechanisms involved in etching of structures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.