Abstract

Chemically treated jute fabric (TJF)- and untreated jute fabric (UJF)-reinforced isotactic polypropylene (PP)-sandwiched composites, such as TJF composite (TC) and UJF composite (UC), with different JF contents (35–60 wt%) were fabricated by the compression molding technique. Then, PP, UC and TC were irradiated by γ–rays with various doses (0–7.5 kGy) to produce γPP, γUC and γTC, respectively. Water intake (WI), chemical texture, tensile strength (TS), flexural strength (FS), Young’s modulus (Y) and thermal degradation temperatures (T d) of the samples were examined. Activation energy (E a) during thermal degradation has been estimated by Broido’s theory. WI in TC, γUC and γTC is lower than that in UC, as accompanied by the change in interfacial textures between JF and PP. The TS, FS, Y, T d and E a values of UC, TC, γUC and γTC are found to lie in the ranges 52–61, 55–63, 440–710 MPa, 400–440 °C and 280–340 kJ/mol, respectively. A relative estimation of physical and chemical crosslinking densities/junctions in the composites has been performed and the values have been analyzed by the rubber elasticity and polymer gel theories. The observed changes in physico-mechanical and thermal properties of the composites have been explained on the basis of crosslinking/bonding between JF and PP. Fourier transform infrared spectroscopy confirms the fiber–matrix interactions. A significant increase in Y and T d values demonstrates a development of strong and thermally more stable JF-reinforced PP composites in the present study.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.