Abstract
With the development of flexible electronics, researchers have endeavored to improve the characteristics of the commonly used indium tin oxide such as brittleness, poor mechanical or chemical stability, and scarcity. Currently, many alternative materials have been considered such as conductive polymers, graphene, carbon nanotubes, metallic nanoparticles (NPs), nanowires (NWs), or nanofibers. Among them, silver (Ag) mesh/grid NPs or NWs have been considered as an excellent substitute due to the good transmittance, excellent electrical conductivity, outstanding mechanical robustness, and cost competitiveness. So far, much effort has been devoted to the fabrication of Ag mesh/grid, and many methods such as printing technology, self-assembly, electrospun, hot-pressing, and atomic layer deposition have been reported. Here printing technologies include jet printing, gravure printing, screen printing, nanoimprint lithography, microcontact printing, and flexographic printing. The solution-based self-assembly usually combines with coating, template, or mask assistance. This review summarizes the characteristics of these fabrication methods for the Ag mesh/grid with its related applications in electronics. Then the prospect and challenges of the fabrication methods are discussed, and the new preparation approaches and applications of the Ag mesh/grid are highlighted, which will be of significance for the applications in electronics such as transparent conducting electrodes, organic light-emitting diode, energy harvester, strain sensor, cells, etc.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.