Abstract
Silver-graphite (AgC) composites are used in electrical switchgears as arcing as well as sliding contacts. AgC composite powders for electrical contact applications are conventionally prepared using micron-size silver powder. Present investigation is aimed at exploring the effect of nanosize silver powder, made by colloidal synthesis route, on the processing and properties of AgC contact materials. The AgC composite powders synthesized from micron-size and nanosize silver powders, respectively, are characterized for particle size distribution by dynamic light scattering technique, x-ray diffraction, and scanning electron microscopy. The bulk solid compacts produced by conventional powder metallurgy process of pressing, sintering, and repressing of AgC composite powders are evaluated for their density, microhardness, electrical conductivity, and microstructure. The study reveals that the use of nanosize silver powder not only leads to reduction in sintering temperature but also contributes in improving the properties of the AgC contact materials.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have