Abstract

A beam of focused infrared light was used to sinter a mixture of silicon powders, copper nanoparticles, and carbon nanotubes for fabricating porous nanocomposite films. Copper was preferentially heated by the infrared light, while silicon was indirectly heated through heat conduction because of its transparency to infrared light. Micro wire formation and interfacial element diffusion were detected on the sintered film surfaces. Networks of copper binder and carbon nanotubes, which provide high binding strength and electrical conductivity, were successfully generated. The sintered depth, porosity rate, and silicon crystallinity were controllable by varying the scan speed of the infrared light.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.