Abstract

This paper explores the characterization of dielectric and conductive properties of carbon nanotube (CNT) networks. This is carried out by building planar transmission lines where conventional metallic traces are replaced by CNT networks. The proposed transmission lines with CNT networks are presented. Experimental realization and repeated two-port microwave measurements of proposed transmission lines enable the accurate extractions of their fundamental parameters showing percolation effects due to presence of CNT networks. The frequency-dependent phase velocity characteristics show a dramatic reduction compared to the speed of light in vacuum. The large magnitude of extracted complex permittivity for CNT networks also exhibits its percolation performance. The effects of CNTs' bulk density on measured and calculated parameters are explained. The results presented in this paper demonstrate the feasibility and the potential of building transmission lines and radio-frequency (RF) circuits elements using CNT networks.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.