Abstract
Both advanced fission reactor concepts and fusion energy systems demand materials that can survive extremely harsh operating environments having persistent high temperature and high neutron flux conditions. Silicon carbide fiber/silicon carbide matrix (SiC–SiC) composites have shown promise for these applications, which include fuel cladding and reactor structural components. However, the composite fabrication process is time consuming and the fabrication of complicated geometries can be difficult.In this work, SiC–SiC and carbon fiber–SiC composite samples were fabricated using chemical vapor infiltration (CVI), and the mechanical and thermal properties of samples with a range of densities and total infiltration times were characterized and compared. Both sample density and the reinforcing fiber material were found to have a very significant influence on the composite mechanical and thermal material properties. In particular, internal porosity is found to have a significant effect on the mechanical response, as can be observed in the crack propagation in low density samples. In order to better understand the densification of the composites, a computer model is being developed to simulate the diffusion of reactants through the fiber preform, and SiC deposition on the fiber surfaces. Preliminary modeling has been correlated with experimental results and shows promising results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.