Abstract

Core-sheath microfibrous structures are widely used in various tissue engineering applications and drug delivery systems. However, the fabrication of the various core-sheath structures using a 3D printing process supplemented with a coaxial nozzle has been challenging due to the center positioning of the core nozzle enclosed in the bigger shell nozzle. In this work, we developed a new 3D printing process using an alginate-based bioink (a mixture of photo-crosslinkable hydrogel and alginate) and its in situ crosslinking process within a single glass nozzle of the 3D printer. By manipulating the alginate weight fraction, UV intensity, flow rate, and nozzle moving speed, we could fabricate various self-assembled core-sheath structures (straight, wavy, and crimped microfibers in the core region of the structure) in which the photocrosslinked hydrogel resided in the core, and alginate was positioned in the sheath region, like a virtual coaxial nozzle.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call