Abstract
Abstract In this work, a temperature-controlled-release and collectable iron fertilizer (TCIF) with a core-shell structure was developed using a nanocomposite consisting of palygorskite (Pal), ferroferric oxide (Fe3O4), ferrous ammonium sulfate hexahydrate (FASH), ethylene oxide/propylene oxide block copolymer (F-127), and amino silicon oil (ASO). Therein, the core was made up of Pal-Fe3O4-FASH mixture, and the shell was composed of ASO-F-127. Pal with a porous micro/nano networks structure could bind a great many of Fe2+ through electrostatic attraction. FASH, as the iron fertilizer and a foaming agent in this system, can produce NH3 at 100 °C to make a plenty of micro/nano pores in the ASO-F-127 shell, which facilitated the release of Fe2+. F-127, a thermally sensitive polymer, can open and close the pores through the liquid-gel transition under different temperature to adjust the release of Fe2+. The hydrophobic ASO endowed TCIF a high stability in aqueous solution for at least 100 days. Fe3O4 made TCIF own a relatively high magnetism so that TCIF could be conveniently collected from water and soil. Significantly, this technology could improve the utilization efficiency of iron fertilizer and promote the absorption of Fe2+ by maize. Besides, TCIF displayed a good reuse performance, which could favor to lower the cost and decrease the residual.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.