Abstract

Fully or partially relaxed micron-sized InGaN patterns with fill factors up to 69% were demonstrated via porosification of the underlying GaN:Si layer. The impact of the porosification etch conditions and the pattern geometry on the degree of InGaN relaxation were studied and monitored via high resolution x-ray diffraction reciprocal space maps. Additionally, a 45 nm redshift in the photoluminescence emission from InxGa1−xN/ InyGa1−yN multi-quantum wells (MQWs) regrown on bi-axially relaxed InGaN buffer layers was observed when compared to a co-loaded reference sample grown on GaN. The longer emission wavelength was associated with higher indium incorporation into the InGaN layers deposited on the InGaN base layers with a lattice constant larger than GaN, due to the reduced lattice mismatch between MQW and InGaN base layer, also called compositional pulling effect.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.