Abstract

We report the formation of Q-carbon nanolayers, Q-carbon nanoballs, nanodiamonds, microdiamonds, and their composites by controlling laser and substrate variables. The choice of these parameters is guided by the SLIM (simulation of laser interactions with materials) computer modeling. For a constant film thickness and initial sp3 content, we obtain different microstructures with increasing pulse energy density as a result of different quenching rate and undercooling. This is related to decreasing undercooling with increasing pulse energy density. The structure of thin film Q-carbon evolves into Q-carbon nanoballs with the increase in laser annealing energy density. These Q-carbon nanoballs interestingly self-organize in the form of rings with embedded nanodiamonds to form Q-carbon nanoballs/diamond composites. We form high quality, epitaxial nano, and micro diamond films at a higher energy density and discuss a model showing undercooling and quenching rate generating a pressure pulse, which may play a critical role in a direct conversion of amorphous carbon into Q-carbon or diamond or their composites. This ability to selectively tune between diamond or Q-carbon or their composites on a single substrate is highly desirable for a variety of applications ranging from protective coatings to nanosensing and field emission to targeted drug delivery. Furthermore, Q-carbon nanoballs and nanodiamonds are utilized as seeds to grow microdiamond films by HFCVD. It is observed that the Q-carbon nanoballs contain diamond nuclei of critical size, which provide available nucleation sites for diamond growth, leading to stress-free, adherent, and denser films, which are needed for a variety of coating applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.