Abstract

This study evaluated the feasibility of using three-dimensional printing (3DP) to fabricate porous titanium implants. Titanium powder was blended with a water-soluble binder material. Green, porous, titanium implants fabricated by 3DP were sintered under protective argon atmosphere at 1,200, 1,300, or 1,400°C. Sintered implant prototypes had uniform shrinkage and no obvious shape distortion after sintering. Evaluation of their mechanical properties revealed that titanium prototypes sintered at different temperatures had elastic modulus of 5.9-34.8 GPa, porosity of 41.06-65.01%, hardness of 115.2-182.8 VHN, and compressive strength of 81.3-218.6 MPa. There were significant differences in each type of these data among the different sintering temperatures (p<0.01). Results of this study confirmed the feasibility of fabricating porous titanium implants by 3DP: pore size and pore interconnectivity were conducive to bone cell ingrowth for implant stabilization, and the mechanical properties matched well with those of the human bone.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.