Abstract

The article surveyed the fabrication of polystyrene (PS)/nano‐CaCO3 foams with unimodal or bimodal cellular morphology from extrusion foaming using supercritical carbon dioxide (sc‐CO2). In order to discover the factors influenced the cell structure of PS/nano‐CaCO3 foams, the effects of die temperature, die pressure, and nano‐CaCO3 content on cell size, density, and morphology were investigated detailed. The results showed that the nano‐CaCO3 content affected the cell size and morphology of PS/nano‐CaCO3 foams significantly. When the die temperature and pressure was 150°C and 18 MPa, respectively, the foams with 5 wt% nano‐CaCO3 exhibited the unimodal cellular morphology. As the nano‐CaCO3 content increased to 20 wt%, a bimodal cell structure of the foams could be obtained. Moreover, it was found that the bimodal structure correlated more strongly with the pressure drop than the foaming temperature. The article revealed that unimodal or bimodal cellular morphology of PS/nano‐CaCO3 foams could be achieved by changing the extrusion foaming parameters and nano‐CaCO3 content. POLYM. COMPOS., 37:1864–1873, 2016. © 2015 Society of Plastics Engineers

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.