Abstract
Aluminium-matrix composites were fabricated by liquid metal infiltration of porous particulate reinforcement preforms, using AlN, SiC and Al2O3 as the particles. The quality of the composites depended on the preform fabrication technology. In this work, this technology was developed for high-volume fraction (up to 75%) particulate preforms, which are more sensitive to the preform fabrication process than lower volume fraction whisker/fibre preforms as their porosity and pore size are much lower. The technology developed used an acid phosphate binder (with P/Al molar ratio=23) in the amount of 0.1 wt% of the preform, in contrast to the much larger binder amount used for whisker preforms. The preforms were made by filtration of a slurry consisting of the reinforcement particles, the binder and carrier (preferably acetone), and subsequent baking (preferably at 200 °C) for the purpose of drying. Baking in air at 500 °C instead of 200 °C caused the AlN preforms to oxidize, thereby decreasing the thermal conductivity of the resulting Al/AlN composites. The reinforcement-binder reactivity was larger for AlN than SiC, but this reactivity did not affect the composite properties due to the small binder amount used. The Al/AlN composites were superior to the Al/SiC composites in the thermal conductivity and tensile ductility. The Al/Al2O3 composites were the poorest due to Al2O3 particle clustering.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have