Abstract
Herein, methods for the fabrication of monolithic diamond integrated photonic devices via Faraday cage‐angled etching of functional epitaxial diamond layers are presented. Optimal waveguide width is determined via simulation and the fabrication of nitrogen vacancy (NV) center‐doped microring resonators is demonstrated. The performance of the devices is verified via microphotoluminescence as well as cathodoluminescence scans of the in‐grown NV centers, revealing clearly visible cavity lines. The scalable fabrication method allows for the realization of large numbers of lateral waveguide structures as needed for future applications in integrated quantum sensing devices as well as novel spin‐based quantum computers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.