Abstract

Well established silicon microfabrication technology and PECVD nanodiamond growth process enabled us to fabricate an ultra-microelectrode array (UMEA) for biosensing applications. The UMEA consists of 2500 nanodiamond elements in a square array surrounded by a layer of thermally grown SiO 2 on a highly doped silicon substrate. Fe(CN) 6 3−/4− redox couple was used for electrochemical characterization of the UMEA using cyclic voltammetry and gave us a steady state response consistent with hemispherical diffusion limited mass transport mechanism. Using the nanodiamond UMEA, we were also able to detect different concentrations of Dopamine in phosphate buffered saline (pH 7.4) without any surface functionalization. The cyclic voltammograms show a steady state response and a linear relationship between the limiting current and Dopamine concentration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.