Abstract

Due to polymer’s excellent flexibility, transparency, reliability and light weight, it is a good candidate material for substrate of devices including organic electronic devices, biomedical devices, and flexible displays (LCD and OLED). In order to build such devices on polymer, nano- to micron-sized patterning must be accomplished. Since polymer materials reacts with organic solvents or developer solutions which are inevitably used in photolithography and cannot bear high temperature (∼140 °C) process for photoresist baking, conventional photolithography cannot be used to polymer substrate. In this research, monomer based thermal curing imprinting lithography was used to make as small as 100 nm dense line and space patterns on flexible PET (polyethylene-terephthalate) film. Compared to hot embossing lithography, monomer based thermal curing imprint lithography uses monomer based imprint resin which consists of base monomer and thermal initiator. Since it is liquid phase at room temperature and polymerization can be initiated at 85 °C, which is much lower than glass temperature of polymer resin, the pattern transfer can be done at much lower temperature and pressure. Hence, patterns as small as 100 nm were successfully fabricated on flexible PET film substrate by monomer based thermal curing imprinting lithography at 85 °C and 5 atm without any noticeable degradation of PET substrate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.