Abstract

The authors present specific nonplanar lithographic (NPL) techniques for use in fabricating both monolithic micromachines and microcomponents for use in larger systems. The emphasis is on the use of numerically controlled E-beam-based lithography, with the resist exposed over nonplanar surfaces. Previously, nonplanar, optical-mask-based approaches have been used to fabricate devices such as wobble motor rotors, but with less success than the NPL techniques due to depth-of-field problems. The specific focus is on etching cylindrically shaped metal structures which are either (1) homogeneous or (2) layered by successive deposition, masking, and etching. Structures on the order of 80 to 500 microns in diameter have been constructed of either solid metals or sputtered thin metallic layers on quartz shafts. A number of either deep or shallow patterns have been fabricated on and through the structures, with promising results. Examples include helices, longitudinal lines, holes, notches, flexures, barbs, alphanumeric characters, and electrostatic field emitting patterns for use in wobble motors. Efforts are now proceeding toward generating complete systems, including transducers and actuators for industrial and medical applications. >

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.