Abstract

A H-terminated surface conductive layer of B-doped diamond on a (111) surface was used to fabricate a metal–oxide–semiconductor field-effect transistor (MOSFET) using an electron beam evaporated SiO2 or Al2O3 gate insulator and a Cu-metal stacked gate. When the bulk carrier concentration was approximately 1015/cm3 and the B-doped diamond layer was 1.5 μm thick, the surface carrier mobility of the H-terminated surface on the (111) diamond before FET processing was 35 cm2/Vs and the surface carrier concentration was 1.5 × 1013/cm2. For the SiO2 gate (0.76 μm long and 50 μm wide), the maximum measured drain current at a gate voltage of −3.0 V was −75 mA/mm and the maximum transconductance was 24 mS/mm, and for the Al2O3 gate (0.64 μm long and 50 μm wide), these features were −86 mA/mm and 15 mS/mm, respectively. These values are among the highest reported direct-current (DC) characteristics for a diamond homoepitaxial (111) MOSFET.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call