Abstract

The inversion current conduction mechanism for MOS(p) capacitors with ultrathin oxides was analyzed from another aspect of bulk traps in this paper. The relationships between deep depletion and generation-recombination current were also studied. It was found that the generation-recombination current due to bulk traps is proportional to the deep-depletion width and dominates the inversion tunneling current. Moreover, it was observed that the inversion tunneling current levels for SiO <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sub> , Al <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sub> O <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">3</sub> , and HfO <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sub> gate dielectrics were different. This discrepancy was explained with their energy band diagrams. Due to the small conduction-band offset of HfO <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sub> , the gate dielectrics of HfO <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sub> show a worse capability to block the inversion tunneling current in the saturation region than Al <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sub> O <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">3</sub> gate dielectrics.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call