Abstract

This paper reports on a fabrication process suitable for ultra-low resonant frequency inertial MEMS sensors. The low resonant frequency is achieved by electrically tunable springs and a heavy mass formed by through-silicon deep reactive-ion etching (DRIE) applied to a silicon-on-glass. A thermal issue of through-silicon DRIE (TSD) stemming from the low-resonant-frequency structure is circumvented by two methods: introducing cooling time between the DRIE steps, and adopting a metal hard mask. A blade dicing method suited for this process is also presented. To monitor the verticality of TSD, a non-destructive taper detection method that utilizes a capacitance–voltage (CV) curve is proposed and verified.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call