Abstract

The fabrication of long-range surface plasmon polaritons (LRSPPs) waveguides based on a thin Au stripe embedded in poly(methyl-methacrylate-glycidly-methacrylate) polymers was investigated. By patterning the photoresist, a wet chemical etching technique was used to avoid sharp pin-like and shark-fin-like structures on the edges of the Au stripe. The surface morphology of the Au film and polymer cladding were studied by atomic force microscopy (AFM), as well as by using the waveguide configuration of the Au stripe. AFM images proved the elimination of parasitic structures. A 2 cm long, 4 μm wide, and 25 nm thick Au stripe waveguide exhibited a propagation loss of approximately 4.3 dB cm−1 measured by the cut-back method and end-fire excitation of LRSPP mode guiding at 1550 nm. The demonstration of optical signal transmission indicates that the LRSPP waveguide fabricated by wet chemical etching is a potential solution to on-chip optical interconnections.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call