Abstract

Synthetic fiber is still considered the best sound absorptive material. However, due to the health concern of synthetic fiber usage, researchers are trying to find another viable alternative. A microperforated panel (MPP) is a promising alternative that relies on the concept of a Helmholtz resonator for sound absorption. MPP possessed excellent acoustic resistance and a considerable range of absorption bandwidth. In this paper, MPP made of natural fiber composite was fabricated and its acoustic absorption was measured using a two-microphone impedance tube method as per ISO 10534-2 standard. Later, the tensile strength of the fabricated acoustic absorbers was measured using an Instron Universal Testing Machine as per ASTM D638. The idea of employing additive manufacturing, better known as the 3D printing technique, is proposed to produce lightweight MPP. The 3D printing technique provides design freedom and is less tedious in creating complex and light structures. The 3D printing technique has various important parameters, and infill density is one of the parameters. It was found that the reduction of infill density leads to a decrease of the MPP’s mass and thus, slightly affects the resonance frequency of the MPP, still within the mid-frequency spectrum. It was also noted that the increment of air gap thickness leads to the shifting of MPP’s resonance frequency to a lower frequency range. The tensile strength of the 3D printed samples decreases with a decrease in infill density. A sample with an infill density of 100% has the highest tensile strength of 22 MPa, and a sample with an infill density of 20% has the lowest tensile strength of 12 MPa.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.