Abstract

The fabrication of large-grain 1.25 μm thick polycrystalline silicon (poly-Si) films via two-stage aluminum-induced crystallization (AIC) for application in thin-film solar cells is reported. The induced 250 nm thick poly-Si film in the first stage is used as the seed layer for the crystallization of a 1 μm thick amorphous silicon (a-Si) film in the second stage. The annealing temperatures in the two stages are both 500°C. The effect of annealing time (15, 30, 60, and 120 minutes) in the second stage on the crystallization of a-Si film is investigated using X-ray diffraction (XRD), scanning electron microscopy, and Raman spectroscopy. XRD and Raman results confirm that the induced poly-Si films are induced by the proposed process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.