Abstract

This study investigated the fabrication of a jelly-like material from recycled linear low-density polyethylene (rLLDPE) using gamma irradiation and thermal processing with silicone oil. rLLDPE was irradiated at 0, 50, 75, and 100 kGy before pyrolysis in silicone oil at 300 ℃ for 1 h to produce the jelly-like material (Ir-jLLDPE). Fourier transform infrared spectroscopy confirmed interactions between rLLDPE and silicone oil in Ir-jLLDPE. Scanning electron microscopy revealed a rough, porous surface morphology with internal fibrillar structures. Thermogravimetric analysis showed thermal decomposition stages related to structural changes from irradiation and silicone oil integration. Batch adsorption experiments demonstrated the exceptional absorption capacities of Ir-jLLDPE for various organic solvents (0.1–24.7 g/g) and oils (0.6–19.8 g/g). Kinetic studies revealed absorption followed pseudo-first order at 50 and 75 kGy doses and pseudo-second order at 0 and 100 kGy doses. Isotherm modeling indicated the Freundlich model better described adsorption behavior. Over 10 adsorption cycles, Ir-jLLDPE exhibited excellent stability for pump oil at 50 and 75 kGy. This research highlights the promise of gamma-irradiated, thermally processed rLLDPE materials for applications in oil spill remediation, organic contaminant removal, and environmental sustainability. The novel approach of combining radiation and thermal processing can upcycle problematic rLLDPE plastic waste into an absorbent jelly material with potential environmental remediation applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call