Abstract

In the present study, we fabricated an efficient, simple biomimetic scaffold to stimulate osteogenic differentiation of mesenchymal stem cells (MSCs). Electrospun poly L-lactic acid nanofibers were employed to mimic the nanofibrillar structure of bone proteins and coated with hydroxyapatite nanoparticles to simulate bone minerals. Thereafter, we regulated the release pattern of BMP-2 peptide through covalent attachment of an optimized liposomal formulation to the scaffold. The fabricated platform provided a sustained release profile of BMP-2 peptide up to 21 days while supporting cellular attachment and proliferation without cytotoxicity. In-vitro results confirmed the superiority of the scaffold containing liposomes through enhancement of growth and differentiation of MSCs. Ectopic bone formation model exhibited significant localized initiation of bone formation of liposome incorporated scaffold. Consequently, these findings demonstrated that our designed platform with modified release properties of BMP-2 peptide considerably promoted osteogenic differentiation of MSCs making it a unique candidate for bone regeneration therapeutics.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call