Abstract
Composites based on poly(3,4-ethylenedioxythiophene): poly(styrene sulfonate) (PEDOT:PSS)-graphene oxide (GO) are increasingly considered for sensing applications. In this work we aim at patterning and prototyping microscale geometries of PEDOT:PSS: GO composites for the modification of commercially available electrochemical sensors. Here, we demonstrate the laser-induced forward transfer of PEDOT:PSS: GO composites, a remarkably simple procedure that allows for the fast and clean transfer of materials with high resolution for a wide range of laser fluences (450-750 mJ/cm2). We show that it is possible to transfer PEDOT:PSS: GO composites at different ratios (i.e., 25:75 %wt and 50:50 %wt) onto flexible screen-printed electrodes. Furthermore, when testing the functionality of the PEDOT:PSS: GO modified electrodes via LIFT, we could see that both the PEDOT:PSS: GO ratio as well as the addition of an intermediate release layer in the LIFT process plays an important role in the electrochemical response. In particular, the ratio of the oxidation peak current to the reduction peak current is almost twice as high for the sensor with a 50:50 %et PEDOT:PSS: GO pixel. This direct transfer methodology provides a path forward for the prototyping and production of polymer: graphene oxide composite based devices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.