Abstract

The tunability of porous covalent triazine frameworks (CTFs) can mitigate poor photostability and rapid hole-electron recombination. Herein, an excellent improvement of visible light-driven photocatalytic pollutant degradation was achieved using a hybrid semiconductor of covalent triazine framework-zinc ferrite spinel catalysts (CTF-ZnFe2O4). The as-prepared CTF-ZnFe2O4 composites were fabricated using a facile one-pot ionothermal method. The hybrid photocatalysts were identified using X-ray diffraction (XRD), scanning electron microscopy/energy-dispersive X-ray (SEM-EDX), X-ray photoelectron spectrometer (XPS), Brunauer-Emmett-Teller (BET), Fourier transform infrared (FTIR), and UV-visible diffuse reflection spectroscopy (UV-vis DRS) characterizations. The analysis reveals that hybridization successfully ensued and altered the crystallinity structure, morphology, surface area, and bandgap energy of hybrid material. It was found that CTF-ZnFe2O4 90:10 is very effective for the degradation of MB in a UV-vis light photocatalytic process with the efficiency of 95.4% and kobs of 0.421min-1 for degradation of 50mg/L MB with 0.5g/L dosages for 120min. Additionally, the scavenger study, effect of additional oxidants, and stability were performed for the practical application of a hybrid photocatalyst. CTF-ZnFe2O4 90:10 shows outstanding pollutant degradation in sunlight irradiation and high stability with only a 5.2% reduction after a five-times sequential recycling process. Moreover, the photocatalytic mechanism of as-prepared CTF-ZnFe2O4 was mainly influenced by [Formula: see text] radical compared to [Formula: see text] and [Formula: see text]radicals. Overall, The as-prepared CTF-ZnFe2O4 shows significant potential to be utilized for photocatalytic wastewater treatment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call