Abstract
In this communication, fabrication of high aspect ratio Al2O3/ZnO/Al2O3 nanotubes is reported and morphological changes at elevated temperatures are investigated. The structures were made by implementing several fabrication methods, such as deep-UV lithography, atomic layer deposition (ALD), and plasma etch methods. During the fabrication, the ALD deposited Al2O3 and ZnO conformally passivated the prepared Si-holes template, resulting in the complex coaxial Al2O3/ZnO/Al2O3 pillars. By utilizing several scanning and transmission electron microscopy techniques, it is experimentally shown that at elevated temperatures, internal voids form in the nanotube due to diffusion of ZnO into surrounding Al2O3 and also ZnAl2O4 spinel structure forms. Finally, the porous tubes have been isolated from the surrounding silicon core using a conventional isotropic selective Si plasma etch process. The presented approach opens the opportunity to build complex optical metamaterial compositions, for example, for a new generation of sensors for gas and biomarker detection.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.