Abstract

High-temperature-stable thermoelectric generator modules (TGMs) based on nanocrystalline silicon have been fabricated, characterized by the Harman technique, and measured in a generator test facility at the German Aerospace Center. Starting with highly doped p- and n-type silicon nanoparticles from a scalable gas-phase process, nanocrystalline bulk silicon was obtained using a current-activated sintering technique. Electrochemical plating methods were employed to metalize the nanocrystalline silicon. The specific electrical contact resistance ρc of the semiconductor–metal interface was characterized by a transfer length method. Values as low as ρc < 1 × 10−6 Ω cm2 were measured. The device figure of merit of a TGM with 64 legs was approximately ZT = 0.13 at 600°C as measured by the Harman technique. Using a generator test facility, the maximum electrical power output of a TGM with 100 legs was measured to be roughly 1 W at hot-side temperature of 600°C and cold-side temperature of 300°C.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.