Abstract

ABSTRACTWe present the fabrication of a high-temperature stable thermoelectric generator based on nanocrystalline silicon. Highly doped silicon nanoparticles were sintered by a current activated sintering technique to get nanocrystalline bulk silicon. The metalization of silicon was realized by (electro-)chemical plating and the specific electrical contact resistance ρc of the semiconductor-metal interface was measured by a transfer length method. Values as low as $\rho _C < 1 \cdot 10^{ - 6} \,\Omega cm^2 $ were measured. The metalized nanocrystalline silicon legs were sintered to metalized ceramic substrates using a silver-based sinter paste. The device figure of merit of the thermoelectric generator was determined by a Harman measurement with a maximum ZT of approximately 0.13 at 600 °C.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.