Abstract

This work explored biodegradable polyvinyl alcohol/starch (PVA/ST) film compatibilized by rod-like ZnO nanofillers as multifunctional food packaging materials. The influence of rod-like ZnO nanofillers on the microstructural, UV-shielding, antibacterial, mechanical, thermal, together with water barrier performances of PVA/ST composite films was fully studied. Results revealed that rod-like ZnO nanofillers could be uniformly distributed into the PVA/ST matrix, playing the role of compatibilizers to provide compact and dense nanocomposite films. The resulting nanocomposite films presented greatly improved mechanical and water vapor barrier properties as compared to virgin PVA/ST film. Moreover, the well distributed ZnO endowed PVA/ST film with excellent antimicrobial activity against both E. coli and S. aureus, together with outstanding UV-shielding capability meanwhile retaining highly optical transparency (approximately 90%). The developed PVA/ST/ZnO films were tested for packaging fresh-cut carrot slices to prevent microbial infection and prolong their shelf life. These results indicated that the developed highly transparent and multifunctional PVA/ST/ZnO nanocomposite films possess broad application prospects in active food packaging field.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call