Abstract

In this work, we report the development of MnO2/F-MWCNT/Ta hybrid nanocomposite sensor with different MnO2 overlayer thickness for the detection of H2O2 in real samples. A novel two-step process using e-beam evaporation and spray pyrolysis deposition was adopted for the synthesis of hybrid MnO2/F-MWCNT/Ta electrodes. SE morphology revealed smaller-sized, compact grains of MnO2 infiltrated on the outermost walls of MWCNTs. Raman analysis confirmed the existence of carbon nanotubes with abundant structural defects of MnO2 in the composite. The cyclic voltammetry results displayed a high peak current and narrowed over potential towards the reduction of H2O2. The sensor displayed a fast response (<5 s), wide linear range (2–1510 μM) and a low limit of detection (0.04 μM) with significant anti-interfering properties, promising for the development of highly sensitive and reproducible biosensors. The three dimensional nanocomposite sensor also exhibited good recovery (> 98%), thus providing a favourable tool for analysis of H2O2 in milk samples.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call