Abstract

Abstract Polyacrylonitrile (PAN) fiber is soft and comfortable, but its poor strength compared to other synthetic fibers has limited it wide range of applications. This study effectively improved the strength of PAN fibers by adding graphene oxide (GO) and polyvinyl alcohol (PVA) during PAN spinning. The composite fibers were prepared via gel spinning and subsequent hot drawing process. The results show that the PVA molecular chains embedded into the PAN molecular chain significantly improved the mechanical properties of the hybrid fiber. At the same time, the defect reduced the UV resistance and thermal stability of the hybrid fibers only when the PVA molecular was introduced in the PAN. Surprisingly, after the recomposition of GO in the above mixed polymer system, the interaction between the GO and matrix not only improved the mechanical properties of the fiber, but also enhanced the UV resistance and thermal stability. In addition, when the amount of GO was 0.3 wt%, the crystallinity of the GO/PVA/PAN composite fiber reached the maximum and the tensile strength was the highest. This strategic approach suggests an effective method to prepare graphene-based ternary composites fibers with high strength and novel functional characteristics.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call