Abstract

The interface design of inorganic and organic halide perovskite-based devices plays an important role to attain high performance. The modification of transport layers (ETL and HTL) or the perovskite layer is given the crucial inspiration to realize superior power conversion efficiencies (PCEs). The highly conducting 2D materials of CNT, graphene/GO, and transition-metal dichalcogenides (TMDs) are suitable substitutes to tune the electronic structure/work function of perovskite devices. Herein, the nanocomposites composed of molybdenum dichalcogenides (MoX2 = MoS2, MoSe2, and MoTe2) stretched CNT was embedded with HTL or perovskite layer to improve the resulted characteristics of perovskite devices of solar cells and X-ray detectors. A superior solar cell efficiency of 12.57% was realized for the MoTe2@CNT nanocomposites using a modified active layer-composed device. Additionally, X-ray detectors with MoTe2@CNT-modulated active layers achieved 13.32 μA/cm2, 3.99 mA/Gy·cm2, 4.81 × 10-4 cm2/V·s, and 2.13 × 1015 cm2/V·s of CCD-DCD, sensitivity, mobility, and trap density, respectively. Density functional theory approximation was used to realize the improved electronics properties, optical properties, and energy band structures in the MoX2@CNT-doped perovskites evidently. Thus, the current research paves the way for the improvement of highly efficient semiconductor devices based on perovskite-based structures with the use of 2D nanocomposites.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.