Abstract
The most pressing need for the majority of applications is the development of microwave absorption composites with thin thickness to make them practical to use and capable of high absorption with adjustable effective absorbing bandwidth. In this research, an innovative nanocomposite made of a LaFeO3 compound decorated with CuCo2O4 particles was chemically developed, and its electromagnetic properties were extracted to study microwave absorbing capability using both waveguide and free space methods, as well as related mechanisms. The resin-based absorber sample with 40% LaFeO3/CuCo2O4 nanocomposite possesses the best wave dissipation feature, with a reflection loss of − 20 dB and an absorption bandwidth of 3.3 GHz in an absorber sample with just 1.8 mm thickness. This is due to the best loss capacity matching factor as well as improvements in impedance matching and attenuation coefficient capability. The sample was made on a 20 × 20 cm scale in accordance with the waveguide mode's results, and the findings were completely supported after carrying out the assessments that are required. This study presents a unique approach to developing EMW-absorbing materials with a broad effective absorption bandwidth and an appropriate absorption capacity by assessing the absorption properties using two different testing methodologies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Colloids and Surfaces A: Physicochemical and Engineering Aspects
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.