Abstract

AbstractUltrahigh‐temperature ceramics (UHTCs) exhibit remarkable hardness and resistance to oxidative ablation, making them suitable for use in hypersonic environments, such as hypersonic aircraft and space shuttles. However, their low fracture toughness limits their applications as engineering materials. In this study, zirconium diboride, an extremely hard and oxidation‐resistant UHTC, was sintered with high aspect ratio boron nitride nanotubes (BNNTs) to improve the fracture toughness of UHTC. Although the high aspect ratio BNNTs tend to become entangled and are inefficient in improving the fracture toughness of the composite, the use of plasma functionalization can effectively disperse the BNNTs in UHTC, resulting in the increase in the fracture toughness of the UHTC composite.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call