Abstract
Helix-fiber composites (HFCs), which involve wrapping a material around a flexible core, are of interest for intelligent stretchable functional materials or devices. Here, we reveal that mechanical coupling between the core and wrapping plays a critical role in controlling the structure and mechanical properties. Our results show that the mechanical properties of the HFC can be programmed by precisely tuning the mechanical coupling strength among them. Interestingly, the HFC also shows unique pseudo-elastic behavior under large strain due to the mechanical coupling effects. The HFC is demonstrated as an elastic metal conductor, programmable sensor, and finally as an elastic mold for structure transplantation by mechanically decoupling the elastomer core from the helix fiber. The results not only deepen the fundamental understanding of HFCs, but also may promote future structure-properties and fabrication studies on helix-structured functional composite and devices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.