Abstract

In this Letter we report for the first time, to the best of our knowledge, a phase spatial light modulator (SLM)-based interference lithography (IL) approach for the realization of hexagonally packed helical photonic structures with a submicrometer scale spatial, as well as axial, periodicity over a large area. A phase-only SLM is used to electronically generate six phase-controlled plane beams. These six beams from the front side and a direct central backside beam are used together in an "inverted umbrella" geometry setup to realize the desired submicrometer axial periodic chiral photonic structures through IL. The realized structures with 650nm spatial and 353nm axial periodicities on negative photoresist can be used as an optical filter and refractive index sensor, as evidenced from the FDTD-based simulation study on its optical properties. Further, the fabricated templates can be transferred to metals such as silver or aluminum for the realization of a metamaterial-based broadband circular polarizer ranging from 1 to 3.5μm of near-infrared spectra.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.