Abstract

Integration of graphene with semiconducting quantum dots (QDs) provides an elegant way to access the intrinsic properties of graphene and optical properties of QDs concurrently to realize the high-performance optoelectronic devices. In the current article, we have demonstrated the high-performance photodetector based on graphene: CdSe QDs/CdS nanorod heterostructures. The resulting heterojunction photodetector with device configuration ITO/graphene: CdSe/CdS nanorods/Ag show excellent operating characteristics including a maximum photoresponsivity of 15.95 AW−1 and specific detectivity of 6.85 × 1012 Jones under 530 nm light illumination. The device exhibits a photoresponse rise time of 545 ms and a decay time of 539 ms. Furthermore, the study of the effect of graphene nanosheets on the performance enhancement of heterojunction photodetector is carried out. The results indicate that, due to the enhanced energy transfer from photoexcited QDs to graphene layer, light absorption is increased and excitons are generated led to the enhancement of photocurrent density. In addition to that, the graphene: CdSe QDs/CdS nanorod interface can facilitate charge carrier transport effectively. This work provides a promising approach to develop high-performance visible-light photodetectors and utilizing advantageous features of graphene in optoelectronic devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.