Abstract
Gold nano- and microstructures such as polyhedral crystals, large single-crystalline nanoplates, hollow trapeziform crystals, holey polyhedra, and dendrites were produced via microwave heating of HAuCl 4⋅4H 2O in a variety of ionic liquids (ILs) in the absence of capping agents (polymers or surfactants) or additional reducing agents. The influence of the IL anions and cations on the topology (size, shape, etc.) of gold materials was studied in detail. The anions of the ILs control the topology of materials, whereas the cations used in the experiments exert less influence. It was also found that the HAuCl 4 concentration, reaction temperature, and heating method are key parameters that help to control the topological structures of the gold materials. For example, the thickness of the large single-crystalline nanoplates could be adjusted from 16 to 320 nm by varying the HAuCl 4 concentration and reaction temperature. This easy synthetic approach to gold nano- and microstructures is a seedless, one-step, fast, template-free route that shows good reproducibility and may be further developed to produce other types of metal nanostructures that satisfy specific applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.