Abstract

Developing a rapid and accurate method for tannic acid (TA) detection and measurement is necessary due to its extensive applications in the food industry. In this work, a fluorescence sensor with a low limit of detection was synthesized for TA for the first time. First, amine-modified carbon quantum dots (a-CQDs) with high-quantum yield were synthesized by the hydrothermal method. A layer of molecularly imprinted polymer (MIP) was then placed on a-CQDs by the surface printing method to increase the sensor selectivity. The mechanism of TA detection by the prepared a-CQDs/MIPs was quenching the fluorescence intensity of a-CQDs in the presence of TA due to the transfer of electrons from the TA to the a-CQDs. The linear range of the sensor response was at the TA concentration of 1–200 nmol L−1 and its detection limit was 0.6 nmol L−1 under optimal conditions. Finally, the sensor was used to measure TA in grape juice, green tea, and black tea samples using the recovery method. Recovery values between 97.4 and 103.6% and RSDs less than 3.8% indicated the high potential of the prepared sensor for TA analysis in complex food samples.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.