Abstract

The present work reports on the fabrication and characterization of a planar Peltier cooler on a flexible substrate. The device was fabricated on a 12 µm thick Kapton(c) polyimide substrate using Bi2Te3 and Sb2Te3 thermoelectric elements deposited by thermal co-evaporation. The cold area of the device is cooled with four thermoelectric junctions, connected in series using metal contacts. Plastic substrates add uncommon mechanical properties to the composite film–substrate and enable integration with novel types of flexible electronic devices. Films were deposited by co-evaporation of tellurium and bismuth or antimony to obtain Bi2Te3 or Sb2Te3, respectively. Patterning of the thermoelectric materials using lift-off and wet-etching techniques was studied and compared. The performance of the Peltier microcooler was analysed by infrared image microscopy, on still-air and under vacuum conditions, and a maximum temperature difference of 5 °C was measured between the cold and the hot sides of the device.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.