Abstract
Nowadays, carbon neutrality target has been receiving a growing attention in academia and industry. In many industry applications, the wear and fatigue damages of bearing components are the frequent failures affecting machine operation. The maintenance and replacement of damaged bearings cause enormous cost in the aspects of consumptions of energy and materials. In this study, a novel technique of friction-assisted electrodeposition (FAED) is firstly demonstrated for surface remanufacturing of worn bearing races. By using the FAED technique, FeCoNi alloys with nanocrystalline were successfully deposited on the selective surface zone. The surface morphology, microstructure feature as well as mechanical properties of the deposited FeCoNi film were quantitatively characterized. The results have indicated that friction load and electrodeposition time have a remarkable effect on the microstructure of the film and its surface finish. The cross-section exhibited a uniform distribution of Fe, Co and Ni. Meanwhile, typical amorphous and polycrystalline features were observed within the deposited film. Additionally, the as-deposited layer shows desired mechanical properties, including hardness, complex modulus and friction coefficient, matching with those of the GCr15 substrate. Scratch test results showed that a good bonding strength between the coating and the bearing steel was achieved. Moreover, the role of friction in the electrodeposition process has been analyzed. This work provides a new route to achieve selective area electrodeposition of alloy films on bearing steel, which can be further developed for metal surface repairing.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have