Abstract

Superhydrophobic materials have been widely applied in rapid removal and collection of oils from oil/water mixtures for increasing damage to environment and human beings caused by oil-contaminated wastewater and oil spills. Herein, superhydrophobic materials were fabricated by a novel polypyrrole (PPy)/ZnO coating followed by hexadecyltrimethoxysilane (HDTMS) modification for versatile oil/water separation with high environmental and excellent reusability. The prepared superhydrophobic surfaces exhibited water contact angle (WCA) greater than 150° and SA less than 5°. The superhydrophobic fabric could be applied for separation of heavy oil or light oil/water mixtures and emulsions with the separation efficiencies above 98%. The coated fabric also realized highly efficient separation with harsh environmental solutions, such as acid, alkali, salt, and hot water. The superhydrophobic fabric still remained, even after 80 cycles of separation and 12 months of storage in air, proving excellent durability. These novel superhydrophobic materials have indicated great development potentials for oil/water separation in practical applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.