Abstract

Composite bone-like substitutes composed of poly-L-lactide (PLLA) and β-tricalcium phosphate (β-TCP) (average particle size: 4.43 μm) were fabricated and the properties were investigated. β-TCP was prepared by wet chemical precipitation, followed by calcining at 800°C. Composite films were obtained by completely mixing dissolved PLLA with granules of β-TCP; the agglomerated β-TCP powder granules were distributed homogeneously in the PLLA matrix. PLLA/β-TCP composite materials were obtained by cold and hot pressing the composite film at a pressure of 130 MPa and temperature of 185°C–195°C. With increase of the amount of β-TCP powder, the bending strength of the composites decreased while the bending modulus increased. The fracture mechanism of the composites was significantly influenced by the content of β-TCP powder, from ductile fracture to brittle fracture as the β-TCP powder content increased.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.