Abstract
The carbon nanotube (CNT) pattern plays an important role in various electronic devices and biological fields for its superior conductivity and biocompatibility. Herein, we fabricated regularly arranged concentric multiwalled carbon nanotube (MWCNT) rings in a Petri dish by evaporation-driven self-assembly technology. By adjusting the dispersion ratio, heating temperature, and solution volume, various MWCNT rings with different shapes and morphologies were obtained. The variation law of ring radius, formation range, and ring numbers was processed with statistical analysis. With fine adjustment of parameters, the control of desired MWCNT rings can be achieved for further scientific researches. By culturing L929 cells with these rings, oriented cell growth along the rings was achieved, which is of significance for cell regulation, tissue repairing, and related biological applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.