Abstract

The temperature-dependent Raman frequency shift in single-walled carbon nanotube (SWCNT) rings in the range of 80–550K is investigated. We observe that the frequency decreases with increasing temperature for all Raman peaks of the nanotube rings. Furthermore, compared to the nanotubes with linear structure, the temperature coefficients of the radial breathing mode and G-mode frequencies of the nanotube rings are much smaller, which means the nanotube rings have more stable thermal ability. We attribute the better thermal stability to the high bending strain energy along the nanotube rings induced by the sidewall curvature.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.